Don’t Miss Out! Sign Up for the Moviefone Newsletter Today.
Highlights
The Roses - Vows Clip
The Roses
Avatar: Fire and Ash - War Is Here Clip
Avatar: Fire and Ash
Predator: Badlands - Tree Fight Official Clip
Predator: Badlands
The Night Manager Season 2 - Official Poster
The Night Manager
Lilo and Stitch - Spaceship Escape Clip
Lilo & Stitch
Avatar: Fire and Ash - Official Teaser Poster
Avatar: Fire and Ash
Mortal Kombat II - Official Featurette
Mortal Kombat II
Song Sung Blue - Kate Hudson as Claire Sardina
Song Sung Blue
Rental Family - Official Teaser Clip
Rental Family
The Devil Wears Prada 2 - Official Poster
The Devil Wears Prada 2
The Toxic Avenger - Moviefone Line
The Toxic Avenger Unrated
The Beast in Me Season 1 - Claire Danes and Tim Guinee
The Beast in Me
Zootopia 2 - Official Teaser Clip
Zootopia 2
The Night Manager Season 2 - First Look at Olivia Colman as Angela Burr
The Night Manager
Theory of Everything: The Quest to Explain All Reality

Theory of Everything: The Quest to Explain All Reality (2017) - Season 1 Episodes and Ratings

Season 1 Episodes

1. Two Prototype Theories of Everything

March 2nd, 2017

Embark with Dr. Lincoln on a search for a theory of everything - a simple and comprehensive explanation for all physical phenomena in the universe. Confront the incompatibility of our two best prototypes: the standard model of particle physics and the general theory of relativity.

2. The Union of Electricity and Magnetism

March 9th, 2017

Learn how two seemingly separate phenomena, electricity and magnetism, were shown by James Clerk Maxwell in the 1860s to be aspects of a single underlying force, demonstrating how unification works in physics. Then see how Maxwell's equations of electromagnetism make a remarkable prediction.

3. Particles and Waves: The Quantum World

March 16th, 2017

Follow one of the strangest turns in modern science: the discovery of the paradoxical world of light, which spawned the theory of quantum mechanics. Discover how light and matter behave as both particles and waves, and look at evidence for this curious feature of the quantum world.

4. Einstein Unifies Space, Time, and Light

March 23rd, 2017

Trace the reasoning that led Einstein to his special theory of relativity, proposed in 1905. Address common misconceptions about this startling new view of time and space, which led to ideas such as mass-energy equivalence, the impossibility of faster-than-light travel, and the space-time continuum.

5. Relativistic Quantum Fields and Feynman

March 30th, 2017

Take a deeper step into the quantum world, observing how the theory of quantum electrodynamics, or QED, unites quantum mechanics with special relativity. Discover that the handy sketches of subatomic behavior called Feynman diagrams (named after physicist Richard Feynman) are really equations in disguise.

6. Neutrinos Violating Parity and the Weak Force

April 6th, 2017

Study the weak nuclear force, which is responsible for beta decay: the emission of an electron from a nucleus during radioactive decay. Discover that much more is going on, including weird transformations that pose a challenge to a theory of everything.

7. Flavor Changes via the Weak Force

April 13th, 2017

Analyze more idiosyncrasies of the weak force, focusing on the three massive particles that mediate its interactions. Discover that the weak force is unique in its ability to change a characteristic called flavor, and learn that at high energies the weak force is exceptionally strong.

8. Electroweak Unification via the Higgs Field

April 20th, 2017

A key step in the quest for a theory of everything has been the realization that the electromagnetic and weak forces are aspects of the same force. Follow the saga of electroweak unification, which culminated in the discovery of the Higgs boson in 2012.

9. Quarks, Color, and the Strong Force

April 27th, 2017

Explore the force that helps hold the atomic nucleus together, called the strong force. Chart the discovery of this mysterious mechanism - which only works at extremely short range - and see how it led to concepts such as quarks, gluons, and the color force, which is responsible for the strong interaction.

10. Standard Model Triumphs and Challenges

May 4th, 2017

Bring together all the concepts studied so far to gauge how close physicists are to a theory of everything. Focus on the shortcomings of the standard model. Then zero in on two burning questions: Why is the mass of the Higgs boson so low, and why does matter predominate over antimatter?

11. How Neutrino Identity Oscillates

May 11th, 2017

Transition to a new perspective as Professor Lincoln spotlights speculative ideas that may contribute to a theory of everything. In this lecture, explore the mysteries of neutrinos, which are extraordinarily hard to detect yet hold intriguing clues about the possible unity of fundamental forces.

12. Conservation Laws and Symmetry: Emmy Noether

May 18th, 2017

Consider why mathematics is such an effective tool for describing nature. Then focus on mathematician Emmy Noether's remarkable insight that links symmetries in the equations of a physical system to conservation laws, such as the conservation of energy and conservation of momentum.

13. Theoretical Symmetries and Mathematics

May 25th, 2017

The first inklings of a successful theory of everything will probably arise from symmetries and group theory. Prepare for this epochal moment by digging into these important mathematical ideas. Also, learn to approach proposed theories of everything with fascination, tinged with healthy skepticism.

14. Balancing Force and Matter: Supersymmetry

June 1st, 2017

One of the most attractive ideas for physicists searching for a theory of everything is supersymmetry, which treats force- and matter-carrying particles as interchangeable. Explore major problems that supersymmetry solves and the shortcomings that convince some scientists that perhaps some other ideas must also be considered.

15. Why Quarks and Leptons?

June 8th, 2017

The fundamental building blocks of matter are thought to be quarks (which interact by the strong force) and leptons (which interact by the electromagnetic and weak forces). But could there be a deeper level? Explore the theory of preons, which may be even more fundamental than quarks and leptons.

16. Newton's Gravity Unifies Earth and Sky

June 15th, 2017

Gravity is by far the weakest of the fundamental forces. Learn how Newton achieved the first major unification in physics by showing that terrestrial and celestial gravity are the same. He also tacitly equated inertial mass and gravitational mass, leading to the startling theory 250 years later.

17. Einstein's Gravity Bends Space-Time

June 22nd, 2017

Built on the equivalence of inertial and gravitational mass, Einstein's general theory of relativity explains gravity in a surprising new way. See how matter and energy determine the shape of space and time. Investigate confirming evidence for general relativity, including the discovery of gravitational waves in 2015.

18. What Holds Each Galaxy Together: Dark Matter

June 29th, 2017

Trace the discovery of missing mass surrounding most galaxies, which leads scientists to infer that 85% of all matter is "dark" and can't be observed directly. Evaluate the major theories about this discrepancy, and consider its implications for a theory of everything.

19. What Pushes the Universe Apart: Dark Energy

July 6th, 2017

Turn to dark energy, the ghostly energy field that appears to be pushing the universe apart at an ever-greater rate. Learn how this extraordinary discovery was made in 1998, and explore theories that attempt to explain dark energy and its strange consequences.

20. Quantum Gravity: Einstein, Strings, and Loops

July 13th, 2017

A theory of everything must fit gravity into the quantum realm, reconciling the general theory of relativity with the standard model of particle physics. Explore the features of gravity that make this unification so difficult, and evaluate two intriguing approaches: superstring theory and loop quantum gravity.

21. From Weak Gravity to Extra Dimensions

July 20th, 2017

Venture into extra dimensions to investigate gravity's extraordinary weakness compared to the other fundamental forces. This journey also sheds light on the possible creation of subatomic black holes in particle accelerators and why tiny black holes pose no risk to humanity.

22. Big Bang and Inflation Explain Our Universe

July 27th, 2017

Starting with the big bang, plot the history of our universe, focusing on events in the tiniest fraction of the first second, when phenomena such as supersymmetry, superstrings, and quantum loops may have come into play. Consider the explanatory power of the theory of cosmic inflation.

23. Free Parameters and Other Universes

August 3rd, 2017

Now step into the realm of other universes. Do they exist? If so, how could we possibly know? Start by examining the free parameters that govern the structure and behavior of our universe. Then seek answers to four crucial questions that address why the parameters take the values that they do.

24. Toward a Final Theory of Everything

August 10th, 2017

Finish the course by reviewing unified theories since Newton, analyzing a remarkable equation that brings major insights together and represents the current status of a theory of everything. Then look ahead to the next steps, and hear Dr. Lincoln's own research agenda for this momentous quest.